
CS193p

Winter 2017

Stanford CS193p
Developing Applications for iOS


Winter 2017



CS193p

Winter 2017

Today
Views

Custom Drawing

Demo
FaceView



CS193p

Winter 2017

Views
A view (i.e. UIView subclass) represents a rectangular area

Defines a coordinate space
For drawing
And for handling touch events

Hierarchical
A view has only one superview … var superview: UIView?
But it can have many (or zero) subviews … var subviews: [UIView]
The order in the subviews array matters: those later in the array are on top of those earlier
A view can clip its subviews to its own bounds or not (the default is not to)

UIWindow
The UIView at the very, very top of the view hierarchy (even includes status bar)
Usually only one UIWindow in an entire iOS application … it’s all about views, not windows



CS193p

Winter 2017

Views
The hierarchy is most often constructed in Xcode graphically

Even custom views are usually added to the view hierarchy using Xcode

But it can be done in code as well
func addSubview(_ view: UIView)// sent to view’s (soon to be) superview
func removeFromSuperview() // sent to the view you want to remove (not its superview)

Where does the view hierarchy start?
The top of the (useable) view hierarchy is the Controller’s var view: UIView.
This simple property is a very important thing to understand!
This view is the one whose bounds will change on rotation, for example.
This view is likely the one you will programmatically add subviews to (if you ever do that).
All of your MVC’s View’s UIViews will have this view as an ancestor.
It’s automatically hooked up for you when you create an MVC in Xcode.



CS193p

Winter 2017

Initializing a UIView
As always, try to avoid an initializer if possible

But having one in UIView is slightly more common than having a UIViewController initializer

A UIView’s initializer is different if it comes out of a storyboard
init(frame: CGRect) // initializer if the UIView is created in code
init(coder: NSCoder) // initializer if the UIView comes out of a storyboard

If you need an initializer, implement them both …
func setup() { … }

override init(frame: CGRect) { // a designated initializer
super.init(frame: frame)
setup()

}
required init(coder aDecoder: NSCoder) { // a required initializer

super.init(coder: aDecoder)
setup()

}



CS193p

Winter 2017

Initializing a UIView
Another alternative to initializers in UIView …
awakeFromNib() // this is only called if the UIView came out of a storyboard
This is not an initializer (it’s called immediately after initialization is complete)
All objects that inherit from NSObject in a storyboard are sent this
Order is not guaranteed, so you cannot message any other objects in the storyboard here



CS193p

Winter 2017

Coordinate System Data Structures
CGFloat
Always use this instead of Double or Float for anything to do with a UIView’s coordinate system
You can convert to/from a Double or Float using initializers, e.g., let cgf = CGFloat(aDouble)

CGPoint
Simply a struct with two CGFloats in it: x and y.
var point = CGPoint(x: 37.0, y: 55.2)
point.y -= 30
point.x += 20.0

CGSize
Also a struct with two CGFloats in it: width and height.
var size = CGSize(width: 100.0, height: 50.0)
size.width += 42.5
size.height += 75



CS193p

Winter 2017

Coordinate System Data Structures
CGRect
A struct with a CGPoint and a CGSize in it …
struct CGRect {

var origin: CGPoint
var size: CGSize

}
let rect = CGRect(origin: aCGPoint, size: aCGSize) // there are other inits as well

Lots of convenient properties and functions on CGRect like …
var minX: CGFloat // left edge
var midY: CGFloat // midpoint vertically
intersects(CGRect) -> Bool // does this CGRect intersect this other one?
intersect(CGRect) // clip the CGRect to the intersection with the other one
contains(CGPoint) -> Bool // does the CGRect contain the given CGPoint?
… and many more (make yourself a CGRect and type . after it to see more)



CS193p

Winter 2017

View Coordinate System
Origin is upper left
Units are points, not pixels

Pixels are the minimum-sized unit of drawing your device is capable of
Points are the units in the coordinate system
Most of the time there are 2 pixels per point, but it could be only 1 or even 3
How many pixels per point are there? UIView’s var contentScaleFactor: CGFloat

The boundaries of where drawing happens
var bounds: CGRect // a view’s internal drawing space’s origin and size
This is the rectangle containing the drawing space in its own coordinate system
It is up to your view’s implementation to interpret what bounds.origin means (often nothing)

Where is the UIView?
var center: CGPoint // the center of a UIView in its superview’s coordinate system
var frame: CGRect // the rect containing a UIView in its superview’s coordinate system

(0,0) increasing x

increasing y

(500, 35)



CS193p

Winter 2017

bounds vs frame
Use frame and/or center to position a UIView

These are never used to draw inside a view’s coordinate system
You might think frame.size is always equal to bounds.size, but you’d be wrong …

View A

View B

300, 225 20025
0 0, 0

320

320

140, 65 Views can be rotated (and scaled and translated)

View B’s bounds = ((0,0),(200,250))
View B’s frame = ((140,65),(320,320))
View B’s center = (300,225)

View B’s middle in its own coordinates is …
(bounds.midX, bounds.midY) = (100, 125)

Views are rarely rotated, but don’t misuse
frame or center anyway by assuming that.



CS193p

Winter 2017

// assuming this code is in a UIViewController

view.addSubview(label)

Creating Views
Most often your views are created via your storyboard

Xcode’s Object Palette has a generic UIView you can drag out
After you do that, you must use the Identity Inspector to changes its class to your subclass

On rare occasion, you will create a UIView via code
You can use the frame initializer … let newView = UIView(frame: myViewFrame)
Or you can just use let newView = UIView() (frame will be CGRect.zero)

Example
let labelRect = CGRect(x: 20, y: 20, width: 100, height: 50)
let label = UILabel(frame: labelRect) // UILabel is a subclass of UIView
label.text = “Hello”

Hello



CS193p

Winter 2017

Custom Views
When would I create my own UIView subclass?

I want to do some custom drawing on screen
I need to handle touch events in a special way (i.e. different than a button or slider does)
We’ll talk about handling touch events in a bit. First we’ll focus on drawing.

To draw, just create a UIView subclass and override draw(CGRect)
override func draw(_ rect: CGRect)
You can draw outside the rect, but it’s never required to do so.
The rect is purely an optimization.
It is our UIView’s bounds that describe the entire drawing area (the rect is a subarea).

NEVER call draw(CGRect)!! EVER! Or else!
Instead, if you view needs to be redrawn, let the system know that by calling …
setNeedsDisplay()
setNeedsDisplay(_ rect: CGRect) // rect is the area that needs to be redrawn
iOS will then call your draw(CGRect) at an appropriate time



CS193p

Winter 2017

Custom Views
So how do I implement my draw(CGRect)?

You can either get a drawing context and tell it what to draw, or …
You can create a path of drawing using UIBezierPath class (which is how we’ll do it)

Core Graphics Concepts
1. You get a context to draw into (other contexts include printing, off-screen buffer, etc.)

The function UIGraphicsGetCurrentContext() gives a context you can use in draw(CGRect)
2. Create paths (out of lines, arcs, etc.)
3. Set drawing attributes like colors, fonts, textures, linewidths, linecaps, etc.
4. Stroke or fill the above-created paths with the given attributes

UIBezierPath
Same as above, but captures all the drawing with a UIBezierPath instance
UIBezierPath automatically draws in the “current” context (draw(CGRect) sets this up for you)
UIBezierPath has methods to draw (lineto, arcs, etc.) and set attributes (linewidth, etc.)
Use UIColor to set stroke and fill colors
UIBezierPath has methods to stroke and/or fill



CS193p

Winter 2017

Create a UIBezierPath
let path = UIBezierPath()

Move around, add lines or arcs to the path
path.move(to: CGPoint(80, 50))
path.addLine(to: CGPoint(140, 150))
path.addLine(to: CGPoint(10, 150))

Close the path (if you want)
path.close()

Now that you have a path, set attributes and stroke/fill
UIColor.green.setFill() // note setFill is a method in UIColor, not UIBezierPath
UIColor.red.setStroke() // note setStroke is a method in UIColor, not UIBezierPath
path.linewidth = 3.0 // linewidth is a property in UIBezierPath, not UIColor
path.fill() // fill is a method in UIBezierPath
path.stroke() // stroke method in UIBezierPath

Defining a Path



CS193p

Winter 2017

Drawing
You can also draw common shapes with UIBezierPath
let roundRect = UIBezierPath(roundedRect: CGRect, cornerRadius: CGFloat)
let oval = UIBezierPath(ovalIn: CGRect)
… and others

Clipping your drawing to a UIBezierPath’s path
addClip()
For example, you could clip to a rounded rect to enforce the edges of a playing card

Hit detection
func contains(_ point: CGPoint) -> Bool // returns whether the point is inside the path
The path must be closed. The winding rule can be set with usesEvenOddFillRule property.

Etc.
Lots of other stuff. Check out the documentation.



CS193p

Winter 2017

UIColor
Colors are set using UIColor

There are type (aka static) vars for standard colors, e.g. let green = UIColor.green
You can also create them from RGB, HSB or even a pattern (using UIImage)

Background color of a UIView
var backgroundColor: UIColor // we used this for our Calculator buttons

Colors can have alpha (transparency)
let semitransparentYellow = UIColor.yellow.withAlphaComponent(0.5)
Alpha is between 0.0 (fully transparent) and 1.0 (fully opaque)

If you want to draw in your view with transparency …
You must let the system know by setting the UIView var opaque = false

You can make your entire UIView transparent …
var alpha: CGFloat



CS193p

Winter 2017

View Transparency
What happens when views overlap and have transparency?

As mentioned before, subviews list order determines who is in front
Lower ones (earlier in the array) can “show through” transparent views on top of them
Transparency is not cheap, by the way, so use it wisely

Completely hiding a view without removing it from hierarchy
var hidden: Bool
A hidden view will draw nothing on screen and get no events either
Not as uncommon as you might think to temporarily hide a view



CS193p

Winter 2017

Drawing Text
Usually we use a UILabel to put text on screen

But there are certainly occasions where we want to draw text in our draw(CGRect)

To draw in draw(CGRect), use NSAttributedString
let text = NSAttributedString(string: “hello”)
text.draw(at: aCGPoint)
let textSize: CGSize = text.size // how much space the string will take up

Mutability is done with NSMutableAttributedString
It is not like String (i.e. where let means immutable and var means mutable)
You use a different class if you want to make a mutable attributed string …
let mutableText = NSMutableAttributedString(string: “some string”)

NSAttributedString is not a String, nor an NSString
You can get its contents as an String/NSString with its string or mutableString property



CS193p

Winter 2017

Attributed String
Setting attributes on an attributed string
func setAttributes(_ attributes: [String:Any]?, range: NSRange)
func addAttributes(_ attributes: [String:Any]?, range: NSRange)
Warning! This is a pre-Swift API. NSRange is not a Range.
And indexing into the attributed string is using Int indexing (not String.Index).
It might be helpful to use String’s utf16 var to get a String.UTF16View.
A UTF16View represents the String as a sequence of 16 bit Unicode characters.
The characters in a UTF16View will then “line up” with an attributed string’s characters.
But UTF16View is still indexed by String.Index.
So you’ll need to get the UTF16View’s characters and use startIndex with index(offsetBy:).

Attributes
NSForegroundColorAttributeName : UIColor
NSStrokeWidthAttributeName : CGFloat
NSFontAttributeName : UIFont
See the documentation under UIKit for (many) more.



CS193p

Winter 2017

Fonts
Fonts in iOS are very important to get right


They are fundamental to the look and feel of the UI



CS193p

Winter 2017

Fonts
The absolutely best way to get a font in code

Get preferred font for a given text style (e.g. body, etc.) using this UIFont type method …
static func preferredFont(forTextStyle: UIFontTextStyle) -> UIFont
Some of the styles (see UIFontDescriptor documentation for more) …
UIFontTextStyle.headline

.body

.footnote

There are also “system fonts”
These appear usually on things like buttons
static func systemFont(ofSize: CGFloat) -> UIFont
static func boldSystemFont(ofSize: CGFloat) -> UIFont
Don’t use these for your user’s content. Use preferred fonts for that.

Other ways to get fonts
Check out UIFont and UIFontDescriptor for more, but you should not need that very often



CS193p

Winter 2017

Drawing Images
There is a UILabel-equivalent for images
UIImageView
But, again, you might want to draw the image inside your draw(CGRect) …

Creating a UIImage object
let image: UIImage? = UIImage(named: “foo”) // note that its an Optional
You add foo.jpg to your project in the Assets.xcassets file (we’ve ignored this so far)
Images will have different resolutions for different devices (all managed in Images.xcassets)

You can also create one from files in the file system
(But we haven’t talked about getting at files in the file system … anyway …)
let image: UIImage? = UIImage(contentsOfFile: aString)
let image: UIImage? = UIImage(data: aData) // raw jpg, png, tiff, etc. image data

You can even create one by drawing with Core Graphics
See documentation for UIGraphicsBeginImageContext(CGSize)



CS193p

Winter 2017

Drawing Images
Once you have a UIImage, you can blast its bits on screen
let image: UIImage = …
image.draw(at point: aCGPoint) // the upper left corner put at aCGPoint
image.draw(in rect: aCGRect) // scales the image to fit aCGRect
image.drawAsPattern(in rect: aCGRect) // tiles the image into aCGRect



CS193p

Winter 2017

Redraw on bounds change?
By default, when a UIView’s bounds changes, there is no redraw

Instead, the “bits” of the existing image are scaled to the new bounds size

This is often not what you want …
Luckily, there is a UIView property to control this! It can be set in Xcode too.
var contentMode: UIViewContentMode

UIViewContentMode
Don’t scale the view, just place it somewhere …
.left/.right/.top/.bottom/.topRight/.topLeft/.bottomRight/.bottomLeft/.center
Scale the “bits” of the view …
.scaleToFill/.scaleAspectFill/.scaleAspectFit // .scaleToFill is the default
Redraw by calling draw(CGRect) again (costly, but for certain content, better results) …
.redraw


